High-Efficiency Thermoelectrics with Functionalized Graphene
نویسندگان
چکیده
منابع مشابه
High-efficiency thermoelectrics with functionalized graphene.
Graphene superlattices made with chemical functionalization offer the possibility of tuning both the thermal and electronic properties via nanopatterning of the graphene surface. Using classical and quantum mechanical calculations, we predict that suitable chemical functionalization of graphene can introduce peaks in the density of states at the band edge that result in a large enhancement in t...
متن کاملOptimal bandwidth for high efficiency thermoelectrics.
The thermoelectric figure of merit (ZT) in narrow conduction bands of different material dimensionalities is investigated for different carrier scattering models. When the bandwidth is zero, the transport distribution function (TDF) is finite, not infinite as previously speculated by Mahan and Sofo [Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996)], even though the carrier density of states goes t...
متن کاملHigh surface area tapes produced with functionalized graphene.
We describe a scalable method for producing continuous graphene networks by tape casting surfactant-stabilized aqueous suspensions of functionalized graphene sheets. Similar to all other highly connected graphene-containing networks, the degree of overlap between the sheets controls the tapes' electrical and mechanical properties. However, unlike other graphene-containing networks, the specific...
متن کاملFabrication of magnetic water-soluble hyperbranched polyol functionalized graphene oxide for high-efficiency water remediation
Magnetic water-soluble hyperbranched polyol functionalized graphene oxide nanocomposite (MWHPO-GO) was successfully prepared and applied to water remediation in this paper. MWHPO-GO was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), magnetization curve, zeta potential, scanning electron microscope (SEM) and transmissio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nano Letters
سال: 2015
ISSN: 1530-6984,1530-6992
DOI: 10.1021/nl504257q